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We examine the motion of a two-layer gravity current, composed of two fluids of
different viscosity and density, as it propagates through a model porous layer. We
focus on two specific situations: first, the case in which each layer of fluid has finite
volume, and secondly, the case in which each layer is supplied by a steady maintained
flux. In both cases, we find similarity solutions which describe the evolution of the
flow. These solutions illustrate how the morphology of the interface between the
two layers of fluid depends on the viscosity, density and volume ratios of the two
layers. We show that in the special case that the viscosity ratio of the upper to
lower layers, V , satisfies V = (1 + F)/(1 + RF) where F and R are respectively the
ratios of the volume and buoyancy of the lower layer to those of the upper layer,
then the ratio of layer depths is the same at all points. Furthermore, we show
that for V > (<)(1 + F)/(1 + RF), the lower (upper) layer advances ahead of the
upper (lower) layer. We also present some new laboratory experiments on two-layer
gravity currents, using a Hele-Shaw cell, and show that these are in accord with the
model predictions. One interesting prediction of the model, which is confirmed by
the experiments, is that for a finite volume release, if the viscosity ratio is sufficiently
large, then the less-viscous layer separates from the source. We extend the model to
describe the propagation of a layer of fluid which is continuously stratified in either
density or viscosity, and we briefly discuss application of the results for modelling
various two-layer gravity-driven flows in permeable rock.

1. Introduction
The displacement of one fluid by a second through a porous layer is a central

process in many natural and industrial flows through porous layers. It is of especial
interest for the oil industry in which polymer-rich water or gas may be injected into
an oil field to enhance oil recovery (Gorell & Homsy 1983). The phenomenon is
also relevant for groundwater remediation when liquid may be injected to contain
or disperse contaminants present in aquifers (Zhou & Blunt 1997). A related process
in the geothermal industry involves the injection of liquid to stimulate heat recovery
from hot rock (Woods 1999). There is a considerable literature on displacement flows
in porous rocks (e.g. Bear 1972; Homsy 1987; Manickam & Homsy 1993; Zimmerman
& Homsy 1991; Tchelepi & Orr 1993). As well as the effects of capillarity and wetting
(e.g. Dullien 1992), a particular focus of such work has been the development of
understanding of the viscous fingering instability in a purely pressure-driven flow
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(Saffman & Taylor 1958; Chouke, Moers & van der Poel 1959; Homsy 1987). This
instability arises when fluid of low viscosity displaces fluid of greater viscosity thereby
leading to an adverse pressure gradient across the interface. Much attention has
focused on modelling the nonlinear evolution of the finger zone which develops
following the initial instability. In a purely pressure-driven flow through a porous
layer, this region tends to grow with time, producing a region in which the two fluids
are intricately interleaved (Homsy 1987).

In many of the above displacement flows, the two fluids often have different
density as well as viscosity. As a result, even with no applied pressure, the buoyancy
forces lead to relative motions between the two layers as they spread under gravity
through the porous layer. There have been a number of numerical calculations
of the macroscopic behaviour of displacement flows involving viscous instability,
permeability heterogeneity and gravity in three dimensions (e.g. Tchelepi & Orr
1993); also, some experiments on miscible displacement flows have been carried out
in model porous layers consisting of packed glass balls, using aqueous saline solutions
(e.g. Peters, Zhou & Blunt 1997). A primary focus of those experiments was to examine
the effect of the competition between the gravitational force and the applied pressure
gradient on recovery rates. Motivated by the richness and complexity of such flows,
here we report on a fundamental theoretical and experimental study of the dynamics
of purely gravitationally driven two-layer flow composed of fluid layers of different
viscosity and density.

We investigate the propagation of the two fluid layers along a horizontal, imper-
meable boundary of a porous layer. The porous layer is assumed to be saturated with
a deep layer of a third fluid of smaller density (e.g. air/gas) which is dynamically
inactive. For simplicity we neglect effects of melting and capillarity, and assume the
interface remains sharp; this is in accord with our experiments on miscible displace-
ment in a Hele-Shaw cell (§ 4), but is an idealization for flow in a porous layer. We
examine the rate of migration of the two fluid layers as a function of their buoyancy
and viscosity contrast. We also predict the nonlinear shape of each layer and the
interface between the layers. The structure of this interface may be interpreted as a
gravity-driven viscous finger, and is complementary to the nonlinear, purely pressure-
driven solutions derived by Saffman & Taylor (1958). We compare the predictions of
our model with a series of laboratory experiments in a Hele-Shaw cell. These confirm
our predictions of the important control that the viscosity contrast, as well as the
buoyancy contrast, has on the structure of the flow.

In § 2 we develop a model of a two-layer gravity current and we identify the
boundary conditions across the interface between the two fluids. We then examine
how the interface morphology varies when a finite mass of each fluid is released at the
source (§ 3). These theoretical predictions are successfully compared with a series of
new laboratory experiments in § 4, and the model is extended to describe the evolution
of a two-layer current produced by a steady flux released at the source (§ 5). In § 6,
we extend the model to describe the release of a fluid which is continuously stratifed
in either density or viscosity and we draw some conclusions in § 7.

2. The model of a two-layer gravity current
We consider a two-layer gravity current propagating along a horizontal lower

boundary through a porous layer of permeability k filled with fluid of density ρ. We
assume that the volume of fluid in each of the layers, i, is given by Qit

γ where i = u, l
represent the upper and lower layer respectively. The case γ = 0 corresponds to a
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Figure 1. Schematic of the motion of a two-layer gravity current, showing some of the variables
used in the text.

finite release at t = 0, and γ = 1 corresponds to a maintained steady release. We
consider the flow to be subject to Darcy’s law and assume that the interface between
the fluids remains sharp as is approximately the case in our Hele-Shaw experiments.
Let us denote the density, viscosity and depth of each of the two layers in the current
as having values ρ+ ∆ρi, µi and hi (figure 1). Once the two-layer current has become
long and thin, the pressure gradient is approximately hydrostatic (Barenblatt 1996)
and

p(y) = pH + ρg(H − y) + ∆ρug(hu + hl − y) for hu + hl > y > hl (2.1)

while

p(y) = pH + ρg(H − y) + ∆ρlg(hl − y) + ∆ρughu for hl > y > 0, (2.2)

where H and pH are the height and pressure at some reference point above both the
layers. In this geometry, the gravitational acceleration is directed in the −y-direction.
In this limit, the horizontal Darcy velocity in the upper layer is

uu = − k

µu
∆ρug

(
∂hl

∂x
+
∂hu

∂x

)
(2.3)

while the Darcy velocity in the lower layer has value

ul = − k
µl

(
∆ρlg

∂hl

∂x
+ ∆ρu

∂hu

∂x

)
, (2.4)

where k is the permeability of the porous rock. The conservation of mass in each
layer, denoted by i = u, l for upper and lower layers respectively, satisfies

φ
∂hi

∂t
+
∂hiui

∂x
= 0 (2.5)

in terms of the porosity, φ, of the matrix. If we define the characteristic flow speed

S =
kg∆ρu
φµu

(2.6)

and the viscosity and buoyancy ratios

V = µu/µl and R =
∆ρl
∆ρu

(2.7)
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then the equations governing the depth of each of the two layers of fluid are

∂hl

∂t
= SV

∂

∂x

(
hl

(
∂hu

∂x
+ R

∂hl

∂x

))
(2.8)

and
∂hu

∂t
= S

∂

∂x

(
hu

(
∂hl

∂x
+
∂hu

∂x

))
. (2.9)

The global conservation of mass for each layer has the form

Qit
γ = φ

∫ Li2

Li1

hi dx (2.10)

for each layer, where Li1 and Li2 denote the location of the leading and trailing edge
of fluid i. We define the ratio of volumes of the two layers by

F = Ql/Qu. (2.11)

To complete the problem, we now specify the boundary conditions.
Source conditions (x = 0): If γ > 0, so that fluid continues to be supplied to each
layer, then conservation of flux at the origin requires

(hu)i|x=0 = γQit
γ−1. (2.12)

However, in the special case γ = 0, there is zero flux at the origin and two situations
may develop. Both layers may remain attached to the origin, in which case

∂hi

∂x
(0) = 0 (2.13)

for both layers. Alternatively, only one layer may remain attached to the source, in
which case for that layer ∂hi/∂x|0 = 0. In the other layer, which detaches from the
source, the layer depth remains equal to zero up to some point Lj0 say, so that hj = 0
for 0 6 x 6 Lj0 say.

Leading edge: We denote the lateral extent of the shorter of the two layers, i say, to
have value Li, so that at the point x = Li, hi(Li) = 0. In the more extensive layer, j say,

[hj]
Li+
Li− = 0 and [uj]

Li+
Li− = 0. (2.14)

In the region ahead of the shorter layer, the flow behaves as a single-layer gravity
current

∂hj

∂t
= Sj

∂

∂t

(
hj
∂hj

∂t

)
, (2.15)

where Sj = S if j = u and Sj = SVR if j = l.
In the next three sections, we describe similarity solutions for this model system,

corresponding to a finite release of fluid in each layer, γ = 0 (§ 3), and a fixed flux of
fluid in each layer, γ = 1 (§ 5). By comparison with new laboratory experiments (§ 4),
we show that these similarity solutions represent the long-time asymptotic solution to
which the currents evolve once the aspect ratio (length/height) of each layer increases
beyond values of order 10.

3. Finite release of fluid
For a single-layer current there is an analytic similarity solution in the case of a

finite release of fluid, γ = 0 (Pattle 1959; Barenblatt 1996) which agrees well with
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laboratory experiments (Huppert & Woods 1995). The solution predicts that the
current depth h(x, t) has the form

h =
1

6

(
Q2

St

)1/3
((

9

φ

)2/3

− x2

(QSt)2/3

)
. (3.1)

The present problem involves two layers, but the solution (3.1) suggests dimensionless
scalings for the depth and extent of each layer in terms of the volume of fluid in
the upper layer, Qu, the natural speed S , the porosity φ and the time t. We therefore
introduce the similarity variable

η = x/H(ωt)1/3 (3.2)

and the similarity scalings for each current

hu = H(ωt)−1/3fu(η) and hl = H(ωt)−1/3fl(η), (3.3)

with H = (Qu/φ)1/2 and ω = S/(Qu/φ)1/2. Equations (2.8), (2.9) may then be reduced
to the self-similar equations

−d(ηfu)

dη
= 3

d

dη

[
fu

d

dη
(fu + fl)

]
(3.4)

and

−d(ηfl)

dη
= 3V

d

dη

[
fl

d

dη
(fu + Rfl)

]
. (3.5)

There are three key parameters that control the structure of the current: the volume
ratio, F (2.11), the viscosity ratio V and the buoyancy ratio R (2.7). As these different
parameters vary, one or other of the currents may detach from the source, and one
of the currents may extend ahead of the other. We first examine a special family
of solutions for which the ratio of the current depths is everywhere a constant. We
then examine how the solutions change as the parameters R and V evolve away from
these particular conditions. Since all solutions in this section are analytic, the algebra
becomes quite involved in places. In order to assist the reader, it may be useful to
refer to figure 2. The discussion (§ 3.1) commences with the special case in which the
ratio of layer depths is constant (figure 2d). We then examine the evolution through
the regimes shown in figures 2(e), (f) and (g) in which the lower layer is of relatively
low viscosity or high density and runs ahead of the upper layer (§ 3.3). The discussion
then returns to figure 2(d) and examines the evolution through the regimes shown in
figures 2(c), (b) and (a) in which the upper layer is relatively less viscous and runs
ahead of the lower layer (§ 3.4). Finally, a distinct limiting case in which both fluids
have the same density, but different viscosity, is considered in § 3.5.

3.1. Currents with constant layer depth ratio, RV > 1 > V ;
F = F∗ = (1− V )/(RV − 1)

As a useful starting point, we first examine a special solution of the equations, which
arises when the ratio of the current depths is a constant,

fl = αfu. (3.6)

Direct substitution into the global conservation of mass (2.10) identifies that α = F ,
while substitution into the governing equations (3.4) and (3.5) then requires that

F = F∗ =
1− V
RV − 1

. (3.7)



88 A. W. Woods and R. Mason

(a)
1.2

0.8

0.4

0 1 2 3

(e)
1.2

0.8

0.4

0 1 2 3

(b)
1.2

0.8

0.4

0 1 2 3

( f )1.2

0.8

0.4

0 1 2 43

(c)
1.2

0.8

0.4

0 1 2 3

(g)0.8

0.4

0 2 4 86

(d)
1.2

0.8

0.4

0 1 2 3

Dimensionless distance

Dimensionless distance

C
ur

re
nt

 d
ep

th

Figure 2. Example calculations for the shape of a two-layer current produced by a finite release of
fluid, illustrating the transitions in current morphology as a function of the viscosity ratio of the
two layers. In the calculations shown, the buoyancy ratio of the two layers is R = 2, the volume
ratio F = 1, and the viscosity ratio V has values (a) 0.1 (upper layer ahead, F < Fu); (b) 0.3 (upper
layer ahead, RV < 1, F > Fu); (c) 0.6 (upper layer ahead, RV > 1 > V , F > Fu); (d) 0.66 (F = F∗);
(e) 0.9 (lower layer ahead, RV > 1 > V , F > Fd); (f) 2 (lower layer ahead, V > 1, F > Fd); (g) 20
(lower layer ahead, F < Fd).
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Since R > 1, we deduce that F∗ > 0 and so this solution is possible only if RV > 1 >
V . This solution has the same form as the classical single-layer solution (3.1), so that
(figure 2d)

fu =
1

6(1 + F)
(η2
o − η2) (3.8)

and

fl =
F

6(1 + F)
(η2
o − η2), (3.9)

with ηo = (9(1 + F))1/3. It follows that for this special solution, at all distances from
the source, the speed has the same value in each layer.

3.2. Currents with non-constant depth ratio

If F > F∗, then the lower current is of relatively greater volume than that for which
the noses of the upper and lower layers advance at the same rate for the given
viscosity and buoyancy ratios. Thus we would expect it to advance ahead of the
upper layer (figure 2e). Conversely, if F < F∗, then we might expect the leading edge
of the lower layer to trail behind that of the upper layer (figure 2c). We now consider
each of these cases in turn and extend the analysis to include the cases in which
V > 1 or RV < 1.

By continuity from the case F = F∗ (§ 3.1), we anticipate that there is a parameter
regime for which both layers are of finite depth at the origin. In this case, we set
f′l(0) = f′u(0) = 0 and integrate (3.4) and (3.5) twice to obtain the relations

fl + fu = 1
6
(η2
l − η2) (3.10)

and

Rfl + fu =
1

6V
(η2
u − η2), (3.11)

where ηu and ηl are constants of integration. These equations are valid until either
fu = 0 or fl = 0. Since the lower layer is denser than the upper layer, R > 1, we may
then solve (3.10), (3.11) to obtain the expressions

fl =
η2
u − Vη2

l

6V (R − 1)
+

(V − 1)η2

6V (R − 1)
, (3.12)

fu =
RVη2

l − η2
u

6V (R − 1)
+

(1− RV )η2

6V (R − 1)
. (3.13)

In order that fu(0) > 0 and fl(0) > 0, we require RVη2
l > η2

u > Vη2
l .

Beyond the point η = η∗, at which the depth of one of the layers, j say, falls to
zero, fj(η

∗) = 0, the depth fi of the continuing current satisfies the equation (cf. 2.15)

dηfi
dη

= 3Ai
d

dη

(
fi

dfi
dη

)
. (3.14)

Here the value of the constant Ai depends on which layer extends the furthest,
Al = RV and Au = 1. This equation has first integral

f
df

dη
=

1

3Ai
ηf + B, (3.15)

where B is a constant. By combining (3.12) and (3.13) with (3.15), one may show that
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in order to satisfy the matching conditions for the depth and flux in the continuing
current at η = η∗, (2.14), B = 0. Now (3.15) reduces to the simpler form

f =
1

6Ai
(η2
e − η2), (3.16)

where ηe is the dimensionless length of the current. Continuity of the depth of the
continuing current at η = η∗ requires

ηe = ηu if i = l or ηe = ηl if i = u. (3.17)

Finally, in order to determine the constants ηl and ηu, we apply the global conservation
of mass in each layer (2.10),∫ η∗

0

fj dη = Fj and

∫ ηe

0

fi dη = Fi, (3.18)

where Fl = F and Fu = 1.
We now use this form of solution (equations (3.12), (3.13), (3.16)) to consider, in

turn, the cases in which the lower (§ 3.3) and the upper (§ 3.4) layers extend ahead
of the other layer. In both cases, we illustrate how the form of the solution evolves
away from the simple case of parallel currents, F = F∗ (§ 3.1).

3.3. Lower layer advances ahead of upper layer

3.3.1. Both layers attached to the source; RV > 1 > V ; F > F∗ > 0

In this case, we expect the lower-layer current to extend ahead of the upper layer
(figure 2e). The condition fu(η

∗) = 0 then determines the extent of the upper-layer
current

η∗ =

(
RVη2

l − η2
u

RV − 1

)1/2

. (3.19)

Conservation of mass in the upper layer (3.18) gives the relation

η2
u = RVη2

l − 92/3V 2/3(R − 1)2/3(RV − 1)1/3. (3.20)

Applying the conservation of mass in the lower layer we then find that

η2
l =

92/3

RV 1/3

(
(R − 1)2/3(RV − 1)1/3 + (FR + 1)2/3

)
(3.21)

and so

η2
u = 92/3V 2/3(1 + FR)2/3. (3.22)

In order that the lower layer outruns the upper layer, we require fl(η
∗) > 0. Combining

(3.12) and (3.20)–(3.22), this condition may be expressed in terms of F as

F > F∗ =
1− V
RV − 1

. (3.23)

Finally, we note that this solution is consistent with the assumption that the
lower layer remains attached to the source, fl(0) > 0, provided that η2

u > Vη2
l . By

substitution, it follows that this is always the case for V < 1 (see § 3.3.2).
These solutions are readily extended to describe the limiting case V = 1. In this

special case, (3.12) reveals that the lower layer has constant depth in the region
0 < η < η∗ in which the upper-layer depth falls to zero (3.6). We will return to this
result in § 5 when considering the motion of continuously stratified currents.
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3.3.2. Lower layer less viscous but remains attached to the source, V > 1; F > Fd

When the viscosity of the upper layer exceeds that of the lower layer, F∗ < 0 and
the form of the solution changes. Now the depth of the lower-layer current initially
increases with distance from the origin ((3.12); figure 2f), while the depth of the
upper layer decreases to zero. Further from the source, the lower-layer depth falls to
zero. However, as long as the current remains attached to the source, the solutions
(3.12) and (3.13), subject to the constraints (3.21) and (3.22), still apply (e.g. figure
2f). These solutions may be used to determine the limiting case in which fl(0) = 0
and hence ηu = Vηl . This limiting case corresponds to the condition

F = Fd =
1

R

((
RV − 1

R − 1

)1/2

− 1

)
(3.24)

and for F > Fd the lower-layer current remains attached to the source (figure 3
below). For smaller volumes of fluid, the lower, dense and less-viscous layer will in
fact detach from the source (figure 2g), as described below (§ 3.3.3). Note that, as
mentioned in § 3.3.1, in the case for which V < 1, Fd < 0 and so both layers are
always attached to the source.

3.3.3. Lower layer detaches from the source, V > 1, F < Fd

If the volume of the less-viscous lower layer is sufficiently small, for the given
viscosity and buoyancy ratios, F < Fd, then all the lower-layer fluid may detach from
the source. In this case, there are three distinct regions in the flow (figure 2g). Near
the origin, the current is entirely composed of upper-layer fluid, 0 < η < η+. There
is an intermediate region in which both layers of fluid are present, η+ < η < η∗, and
finally, the lower-layer fluid forms the leading edge of the current, η∗ < η < ηe. In the
region in which both fluids are present, the solution has the same form as given by
equations (3.12), (3.13). η+ is the position at which the lower-layer depth (3.12) is zero,

η+2
=
Vη2

l − η2
u

V − 1
(3.25)

and ηe is the maximum extent of the current. The maximal extent of the upper layer
is given by (3.13)

η < η∗ =

(
RVη2

l − η2
u

RV − 1

)1/2

. (3.26)

The condition that the two currents overlap, η+ < η∗, requires that Vη2
l > η2

u > η2
l .

The continuity of depth and speed of each layer at the points η = η+ and
η = η∗, which bound the region in which both fluid layers are present, provide useful
constraints on the flow solutions. Near the origin, η < η+, the upper layer is described
by a solution of the form (cf. (3.16))

fu = 1
6
(η2
s − η2). (3.27)

Coupling this with the matching conditions at η = η+ where the depth of the lower
layer is first non-zero (3.25) gives the result

ηs = ηl. (3.28)

In the region η > η∗, ahead of the upper layer, the lower layer is described by a
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solution of the form (cf. (3.16))

fl =
1

6RV
(η2
e − η2). (3.29)

The matching conditions at η = η∗ (2.14) give the result

ηe = ηu. (3.30)

Using these solutions, we may now apply the global conservation of mass in both the
upper and lower layers. This leads to two nonlinear equations for ηu and ηl ,

RV − 1

V (R − 1)

(
RVη2

l − η2
u

RV − 1

)3/2

− V − 1

V (R − 1)

(
Vη2

l − η2
u

V − 1

)3/2

= 9 (3.31)

and

1

RV
η3
u +

V − 1

V (R − 1)

(
Vη2

l − η2
u

V − 1

)3/2

− RV − 1

RV (R − 1)

(
RVη2

l − η2
u

RV − 1

)3/2

= 9F. (3.32)

Numerical solution of these equations determines the full solution for both the upper-
and lower-layer currents (e.g. figure 2g).

In the limit V → ∞, we expect the lower layer to run ahead of the upper
layer, and each layer should behave essentially as a single layer. From the above
algebraic relations (3.31), (3.32) we see that in this limit, the extent of the lower
layer ηu → (9RFV )1/3, as for the classical single-layer solution (3.1). Furthermore,
we find that ηl → 91/3 and so the extent of the upper layer η∗ → 91/3, again as in
the classical single-layer flow (3.1). We also note that the extent of the intermediate
region, in which both layers are present, becomes vanishingly thin. In § 3.5 we examine
a different limit, R → 1, in which this intermediate region again becomes vanishingly
thin.

3.4. Upper layer advances ahead of lower layer

3.4.1. Both layers attached to the source, F < F∗ 6 ∞
If F < F∗, we expect the upper layer to extend beyond the lower layer (figure 2c).

Equation (3.12) together with the condition fl(η
∗) = 0 determines that

η∗ =

(
η2
u − Vη2

l

1− V
)1/2

. (3.33)

Using the solution (3.12), it follows that the conservation of mass in the lower layer
(3.18) requires

η2
u = Vη2

l + 92/3V 2/3F2/3(R − 1)2/3(1− V )1/3. (3.34)

In the region ahead of the lower-layer current, η > η∗, the upper-layer current has
shape (3.16)

fu = 1
6
(η2
e − η2). (3.35)

Applying conservation of mass in the upper layer together with the matching condition
(3.17) at the front of the lower layer, η = η∗, identifies that

η2
l = 92/3(F + 1)2/3. (3.36)

In order that the upper layer outruns the lower layer, we require fu(η
∗) > 0. By

combining this with (3.13) and (3.34), (3.36), it follows that this condition is equivalent
to F < F∗.
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Finally, the condition that the upper layer remains attached to the source, fu(0) > 0,
requires that η2

u > RVη2
l . By substitution, we find that this condition is always the

case for RV > 1 (§ 3.4.2).
In the limiting case in which RV = 1 and F∗ → ∞, the solutions still apply, but

now the upper layer has a fixed depth until the point at which the depth of the lower
layer falls to zero (3.12).

3.4.2. Upper layer attached to the source; RV < 1, F < Fu

As the upper layer becomes less viscous, it tends to run further ahead of the
more-viscous lower layer and the form of the solution changes (figure 2b). If the
upper layer is sufficiently large compared to the lower layer it remains attached to the
origin. However, now the depth of the upper layer increases with distance from the
origin in the region 0 < η < η∗, as the depth of the lower layer falls to zero (figure
2b). Beyond this region, η∗ < η < ηe, the upper-layer depth then falls to zero. The
solutions (3.12), (3.13) apply near the source, in the region 0 < η < η∗. In order that
the upper layer remains attached to the source we require RVη2

l > η2
u . Using (3.34),

(3.36), it follows that this requires (figure 3)

F < Fu =
1(

(1− V )/[V (R − 1)]
)1/2 − 1

. (3.37)

Note that as RV → 1, Fu →∞ and so, as mentioned in § 3.4.1, for RV > 1, the upper
layer remains attached to the source.

3.4.3. Upper layer detaches from the source: F > Fu; F
∗ < 0

For F > Fu, the upper layer detaches from the source, running ahead of the more-
viscous lower layer (figure 2a). As in § 3.3.3, there are three distinct regions of the
current: in this case, there is region near the source containing only lower-layer fluid,
0 < η < η+, a region containing both layers, η+ < η < η∗, and a region containing
only upper-layer fluid, η∗ < η < ηe. As in § 3.3.3, the intermediate region, containing
both layers of fluid is described by (3.12) and (3.13). The upper layer lies in the
region η+ < η < ηe while the lower layer lies in the region 0 < η < η∗. In order that
there is an overlap between the two layers, η+ < η∗, we require RVη2

l > η2
u > η2

l . The
solutions in the regions containing a single layer of fluid are analogous to (3.27) and
(3.29), but now have the form fu = (η2

e − η2)/6 and fl = (η2
s − η2)/(6RV ) since the

upper layer advances ahead of the lower layer. As in § 3.3.3, the solution is found by
matching these solutions for a single layer of fluid with the solutions (3.12), (3.13) for
the intermediate region in which both fluids are present. Now we find that ηe = ηl
and ηs = ηu.

The system is completed with the equations for global conservation of mass in each
layer. Combining these constraints, we derive the two nonlinear equations relating ηu
and ηl (cf. (3.31), (3.32))

1− RV
V (R − 1)

(
η2
u − RVη2

l

1− RV
)3/2

− 1− V
V (R − 1)

(
η2
u − Vη2

l

1− V
)3/2

+ η3
l = 9 (3.38)

and

1− V
V (R − 1)

(
η2
u − Vη2

l

1− V
)3/2

− 1− RV
RV (R − 1)

(
η2
u − RVη2

l

1− RV
)3/2

= 9F. (3.39)

Solution of these algebraic equations then determines the exact similarity solution
(e.g. figure 2a).
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It is interesting to note that in the limit V → 0, the two layers become essentially
decoupled. The upper layer runs ahead of the lower layer, and its length ηl → 91/3 as
in the classical single-layer solution (3.1). We also find that ηu → (9FRV )1/3 so that
the length of the lower layer has asymptotic value η∗ → (9RFV )1/3. Since we have
defined dimensionless properties relative to the top layer, then again we see that this
limit corresponds to the classical solution for a single-layer current (3.1). Finally, as
in § 3.3.3, we note that in this limit the intermediate zone, in which both layers are
present, becomes vanishingly thin.

3.5. Equal density but different viscosity, R = 1, V 6= 1

One limiting case is that in which the two fluids have the same density, R = 1,
but different viscosity. Now, solutions (3.12) and (3.13) break down. However, by
considering the limit R → 1, we see that in fact the interface between the two layers
becomes vertical, with the less-viscous fluid advancing ahead of the more-viscous
layer. For example, if we consider the case V < 1, the lower layer is more viscous
and trails the upper layer. The variation of depth as a function of distance from the
source then has the form

fl =
1

6V
(η2
u − η2) for 0 < η < η∗ (3.40)

and

fu = 1
6
(η2
l − η2) for η∗ < η < ηl. (3.41)

Continuity of the current depth at η = η∗ is given by fl(η
∗) = fu(η

∗) and yields the
algebraic relation

η∗2 =
Vη2

l − η2
u

V − 1
. (3.42)

The global conservation of mass in each layer leads to the additional relations

(3η2
u − η∗2)η∗ = 18VF (3.43)

and

2η3
l − 3η2

l η
∗ + η∗3 = 18. (3.44)

Solution of (3.42)–(3.44) gives solutions for ηu, η
∗ and ηl in terms of F and V . The

results illustrate how the relative extent of the two layers is strongly controlled by the
viscosity contrast.

3.6. Summary of regimes

The different flow regimes which develop as F and V change, for a given value of
R, may be summarized in a simple regime diagram (figure 3). The physical origin of
the transitions between the different flow regimes may also be understood from this
diagram. First we note that equation (3.7), F = F∗, may be re-written in terms of a
critical viscosity ratio

V = V ∗ =
1 + F

1 + RF
. (3.45)

As seen from figure 3, if V > V ∗, then the lower layer advances ahead of the upper
layer, while for V < V ∗, the upper layer advances ahead of the lower layer. Since V ∗
always lies in the interval 0 < V ∗ < 1, it is therefore instructive to examine how, for
a given value of the volume and buoyancy ratios of the layers, the flow configuration
evolves with viscosity ratio. For high viscosity ratio, with the upper layer being more
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Figure 3. Regime diagram illustrating how the different flow morphologies depend on the viscosity
ratio V and volume ratio F of the two fluid layers. Curves are given for a density ratio R = 2.

viscous, V � 1, the lower layer runs ahead of the upper layer, detaching from the
origin (figure 2g). As the viscosity ratio decreases, the trailing edge of the lower layer
moves back towards the origin and eventually makes contact with the origin (figure
2f). This occurs when F = Fd (3.24); this condition may be re-expressed in terms of
V as

V = Vd =
(RF + 1)2(R − 1) + 1

R
. (3.46)

Thus for V > Vd the lower layer is detached from the source. As the viscosity ratio
continues to fall, the lower-layer speed begins to decrease towards that of the upper
layer (figure 2e). Eventually, the current passes through the point V = V ∗ (F = F∗)
at which the ratio of the current depths is everywhere the same, and hence, at each
point, the speed of each layer is the same (figure 2d). As the viscosity ratio decreases
further, the upper layer begins to flow more rapidly than the lower layer, and hence
overruns the lower layer (figure 2c). For even smaller viscosity ratios, the upper layer
eventually detaches from the source (figure 2a, b). This first occurs when F = Fu
(3.37). This condition may be re-expressed in terms of V as

V = Vu = (1 + (R − 1)(1/F + 1)2)−1. (3.47)

Thus, for V < Vu, the upper layer is detached from the source.
As the buoyancy ratio of the layers changes, the boundaries between these different

transition points also evolves, although the general evolution through the different
regimes remains the same. For example, in figure 4, we present the regime diagram
for the case R = 1.1. Now, the critical viscosity ratios at which either the upper or the
lower layer separates from the source are both closer to the point V = 1 (cf. figure
3). In the case R = 1, we showed in § 3.5 that the interface between the two fluid
layers is vertical. For a given buoyancy ratio R > 1, the vertical interface between the
fluids becomes distorted, and the degree of distortion increases as either R increases,
or |V − 1|, the dimensionless difference in viscosity, decreases. As a result, the critical
value of V at which the interface becomes distorted sufficiently to intersect the origin
is closer to V = 1 for smaller R.
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Figure 5. Variation of the viscosity ratio as a function of time as determined from the two control
experiments (§ 4.1). In the long time limit, V → 0.36.

As a final comment on these solutions, equation (3.45) has the interesting limits
V ∗ = 1 as F → 0 and V ∗ = 1/R as F → ∞. This means that in order to effectively
displace a dense fluid with a less-dense fluid, the viscosity of the less-dense fluid
should be greater than that of the underlying dense fluid irrespective of the volume
of less-dense fluid added to the system. Otherwise the low-density fluid will simply
run off the dense layer and spread ahead. Similarly, in order to displace a low-density
fluid with a more-dense fluid, the denser fluid should have viscosity greater than that
of the upper layer times the buoyancy ratio of the two layers, irrespective of the
volume of dense fluid added to the system. Otherwise it will spread under and ahead
of the less-dense layer.
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Figure 6. (a) Sequence of photographs for experiment 4.1, for which R = 1.1, V = 0.36. The
photographs show the evolution of the current towards the self-similar shape. Photographs were
taken at the times (i) 0, (ii) 14, (iii) 51, (iv) 131, (v) 189, (vi) 399 and (vii) 675 s. The glycerol is
dyed red and the syrup is dyed green. (b). Prediction of the current shape from the theory of § 3 for
comparison with the experiments.
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4. Experimental investigation
We have conducted a series of laboratory experiments to examine the propagation

of two-layer gravity currents in a Hele-Shaw cell for comparison with the model
described above. The cell consisted of two Perspex walls, of height 150 mm and length
1000 mm, separated by a gap of width b = 3 mm. For the present experiments, the
flow in the cell had Reynolds number of order 0.01–0.1, and so provides a good
analogue for flow in a porous layer (Bear 1972). Indeed, the flow is governed by the
model of § 2, with a permeability of value b2/12, provided that the current remains
deeper than the width of the cell so that the frictional stresses with the floor of the
cell and between the layers may be neglected.

In the experiments, the two layers of fluid were placed side by side in two locks at
the end of the cell, with the more-viscous fluid closer to the end (see figure 6ai below).
The two lock gates were then removed and the ensuing evolution of the flow was
recorded by video and photograph. For convenience, the two fluids used were golden
syrup (lower layer) and glycerol (upper layer), each diluted with a small quantity of
water to vary the viscosity. The dilution was small, and in all the experiments the
density contrast R = 1.1± 0.05. The viscosity ratio of the two fluid mixtures, V , was
determined by conducting two control experiments in which the location of the nose
of a single-layer gravity current of a specific volume of each fluid was measured at a
predetermined set of times, ti (cf. Huppert & Woods 1995). This produced two sets
of data, x1(ti) and x2(ti). By comparison with the similarity solution (3.1), it follows
that when each of the currents has adjusted to self-similar form, the viscosity ratio is
given by µ1/µ2 = (ρ1/ρ2)(x2(t)/x1(t))

3.
In figure 4, we show the regime diagram for the case R = 1.1. For such a small

density contrast, we see that the less-viscous layer typically separates from the source,
unless the viscosities are very similar. By varying the dilution, we were therefore able
to examine situations in which either the upper or the lower layer was more viscous
and is predicted to separate from the source. We now describe two experiments,
corresponding to the experimental conditions shown on figure 4.

4.1. Upper layer less viscous

In this experiment, the viscosity ratio had value V ∼ 0.36 (figure 5), so that from
figure 4 we expect the upper layer to separate from the source and run ahead of the
lower layer. In figure 6(a) we present a series of photographs which illustrate the time
evolution of the current. The viscous syrup (green) was placed in the outer lock, and
the glycerol (red) in the inner lock. After a rapid initial slump, the current acquires
the two-layer structure anticipated by the model of § 3, with the glycerol advancing
ahead of the syrup. Note that during the initial slump (figure 6aii; 14 s), the no-slip
condition on the walls of the cell causes the interface between the two layers of fluid
to become distorted; the viscous syrup flows into the central part of the cell, while
the walls of the cell remain covered with glycerol. However, as the flow spreads and
the speed decreases, the buoyancy contrast between the layers restores the interface
to a well-defined front, as assumed in the model (figure 6aiv–vii). Figure 7 shows
that the leading edge of each layer of the current increases as t1/3, in good accord
with the prediction that the current evolves in a self-similar fashion following release
(§ 3.4.3). The observed shape of the current is also in good accord with the model
prediction (cf. figures 6a and 6b), with the prediction of the maximal extent of the
lower layer being within about 10–20% of the observations. The region of overlap of
the two layers predicted by the model is somewhat shorter than that observed in the
experiments; in part, this may be a result of the viscous stresses between the lower
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Figure 8. Variation of the viscosity ratio as a function of time as determined from the two control
experiments (§ 4.2). In the long-time limit, V → 2.27.

layer and the floor of the cell and between the upper and lower layers. These stresses
become dominant as the relevant layer thickness decreases to values similar to the
width b of the cell. In comparison to the idealized model predictions, which only
account for the frictional stresses with the vertical walls of the cell, in the experiments
these additional stresses act to increase the region of overlap between the two fluids.

4.2. Lower layer less viscous

In this second experiment, we determined that the viscosity ratio between the upper
and lower layers, V ∼ 2.27 (figure 8), so that from figure 4 we expect the lower layer
to separate from the source and run ahead of the lower layer. Figure 9(b) shows a
sequence of photographs illustrating the evolution of the current after the lock gates
were removed. Here, the dilute yellow syrup layer is denser but less viscous than the
blue glycerol layer. As expected, the dilute syrup runs ahead of the glycerol and the
current again acquires a shape similar to that predicted by the model (figure 9b).
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Figure 9. (a) Sequence of photographs for experiment in § 4.2 for which R = 1.1, V = 2.2. The
photographs show the evolution of the current towards the self-similar shape. Photographs were
taken at the times (i) 0, (ii) 7, (iii) 29, (iv) 63, (v) 128, and (vi) 246 s. The glycerol is dyed blue and
the syrup is dyed yellow. (b) Prediction of the current shape from the theory of § 3 for comparison
with the experiments.

Analysis of the time evolution of the current confirms that to good approximation,
the maximal extent of both the upper and lower layers increases with t1/3 (figure
10), again supporting the prediction that the current evolves in a self-similar fashion
(§ 3.3.3). Again, although the predicted shape of the current is in reasonable accord
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Figure 11. Long-time structure of a current produced from a source in which the low-viscosity
upper layer was initially placed above the lower layer. In comparison with the flow shown in figure
6, there is a narrow strip of upper layer fluid which extends back to the source. This is a result of
the viscous stress with the underlying layer.

with the model (figure 9), the viscous stresses between the two layers and between
the lower layer and the cell floor appear to stretch out the zone of overlap of the
two layers by 20–30% in comparison with the idealized model prediction. There is a
slow drift of the experiments away from the self-similar solution at long times. This
may be the result of the friction with the lower boundary as described by Huppert &
Woods (1995).

4.3. Other regimes and effect of initial conditions

The above experimental observations provide very good evidence that after some
initial transient, the flow is approximately described by the self-similar solutions
described in § 3. This initial transient will depend on the initial configuration of the
two fluids, and more complex transient flow patterns may develop with more irregular
source conditions. For example, figure 11 shows the long-time profile of an experiment
in which initially the low-viscosity upper layer was located vertically above the dense
lower layer at the source. Although there was some intermingling of the fluid layers
during the initial stages of the process, as the upper layer slumps ahead of the lower
layer, the current does eventually segregate into two well-defined layers. As predicted
by the model (cf. § 4.1), the main volume of the red upper layer lies some distance
ahead of the source. However, one effect of the viscous stress between the two layers
of fluid is the appearance of a thin strip of red upper-layer fluid which extends all
way back to the source above the lower layer.
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5. Continuous release of fluid
With a continuous release of fluid, both layers always remain attached to the origin.

Again, it is of interest to determine which layer extends further from the source. For a
continuous release of fluid, the model equations (2.4)–(2.6) admit solutions of the form

hl(x, t) = H(Ωt)1/3fl(η), (5.1)

hu(x, t) = H(Ωt)1/3fu(η), (5.2)

where η = x/H(Ωt)2/3, H = Qu/Sφ and Ω = S2φ/Qu, with φ
∫ Ll

0
hl dx = FQut, and

φ
∫ Lu

0
hu dx = Qut being the volume of each current after a time t.

We deduce that fl and fu satisfy the equations

fl − 2η
dfl
dη

= 3V
d

dη

(
fl

(
R

dfl
dη

+
dfu
dη

))
(5.3)

while

fu − 2η
dfu
dη

= 3
d

dη

(
fu

(
dfl
dη

+
dfu
dη

))
, (5.4)

with ∫ λl

0

fl dη = F and

∫ λu

0

fu dη = 1, (5.5)

where λl and λu are the dimensionless lengths of the upper- and lower-layer currents.
In the special case in which

fl = Ffu (5.6)

throughout the length of the current, we find that both currents have the same
horizontal extent. In order that equations (5.3) and (5.4) are satisfied, we then require
that

F = F∗ =
1− V
VR − 1

. (5.7)

This is the same condition as derived in § 3.1 for a finite release of fluid, and requires
that V < 1 < VR. Again, if F > F∗, then we expect that the upper layer extends
beyond the lower layer, and conversely in the case F < F∗. Therefore equation (5.7)
provides the boundary between the two forms of solution. Unfortunately, the system
of equations is not tractable analytically, and so the detailed form of the solutions
in other cases can only be determined numerically. One key difference between these
solutions and those of § 3 is that both currents remain attached to the source. However,
as V increases above unity, so that F∗ becomes negative, then we expect that most
of the fluid in the low-viscosity lower layer will advance ahead of the upper layer.
Similarly, as RV falls below unity, the upper layer becomes less viscous and most of
the fluid in the upper layer is expected to lie ahead of the lower layer.

We have solved the system of equations numerically to determine the different flow
regimes which develop as a function of the controlling parameters. In order to solve
the equations, we require that the flux and depth of each layer is continuous at the
point at which the depth of one or other of the currents falls to zero, and we consider
in turn the cases in which the upper and the lower current is of greater extent.

5.1. Upper layer of greater extent, ηu > ηl

To proceed with the numerical solution, it is convenient to define the variable

ζ = η/ηu (5.8)



Two-layer gravity-driven flows in permeable rock 103

and

(nl, nu) = η2
u(fu, fl) (5.9)

so that the upper layer lies in the region 0 < ζ < 1 and the lower layer in the region
0 < ζ < ζl = ηl/ηu; nl and nu satisfy the equations (cf. (5.3), (5.4))

nu − 2ζ
dnu
dζ

= 3
d

dζ

(
nu

[
dnu
dζ

+
dnl
dζ

])
, (5.10)

nl − 2ζ
dnl
dζ

= 3V
d

dζ

(
nl

[
R

dnl
dζ

+
dnu
dζ

])
, (5.11)

but the global mass conservation now has the form∫ 1

o

nu dζ = η3
u and

∫ ζl

0

nl dζ = η3
uF. (5.12)

Conservation of upper-layer flux at the point where the lower current terminates
ζ = ζl requires

dnu
dζ

(ζl+) =
dnu
dζ

(ζl−) +
dnl
dζ

(ζl−), (5.13)

while a power series solution for the depth of each current about ζ = ζl (cf. Huppert
1986) shows that

dnl
dζ

(ζl−) =
1

3VR

(
−2ζl − 3V

dnu
dζ

(ζl−)

)
. (5.14)

Finally, at the leading edge of the current, ζ = 1, the upper-layer depth satisfies

dnu
dζ

= −2

3
. (5.15)

By numerically integrating the equations backwards from ζ = 1, subject to these
boundary conditions, we are able to find the shape of the two-layer currents and the
value of F for each value of ζl . For each set of parameters (R, V ), we search for the
value of ζl , 0 < ζl < 1, such that F has the desired value. In all the figures presented
below, the dimensionless solutions nu, nl are shown as functions of ζ.

Figure 12(d–g) illustrates the dependence of the structure of the current on the
buoyancy ratio of the layers. In these calculations, the viscosity ratio of the upper to
lower layers, V = 0.1, so that the upper-layer fluid is considerably less viscous than the
lower layer while F = 1. For small values of the buoyancy ratio, R = 1.01 (figure 12g),
the low-viscosity upper layer runs over and ahead of the lower layer. At its leading
edge, the depth of the lower layer falls to zero rapidly. This is expected, by analogy with
the finite release problem for which the case R = 1 (§ 3.3.1) showed that the interface
between the two layers becomes vertical. As the lower layer becomes progressively
more dense (figure 12(e, f)), the difference in viscosity is partially counterbalanced by
the density, and an increasing fraction of the upper layer remains above the dense
lower layer. Eventually, at the critical point, at which F∗ = F = 1, which requires
R = 19, (5.7), the depths of the upper and lower layers become identical at all points
(figure 12(d)). As the parameters pass through the point RV = 1, corresponding to
F∗ → ∞, an inflection is seen to develop in the depth of the current.

Figure 13(d–g) illustrates the change in structure of the current as the viscosity
ratio evolves, for a fixed value of the buoyancy ratio, R = 2. For small values of
the upper-layer viscosity (figure 13(g)) the upper layer runs ahead of the lower layer,
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Figure 12. Variation of the flow morphology in a two-layer current produced by a maintained
source of fluid as a function of the density ratio. In all calculations the flux ratio F = 1, while
the viscosity ratio has value 0.1. The density ratio takes the values (a) R = 1000; (b) R = 100; (c)
R = 30; (d) R = 19; (e) R = 6; (f) R = 2; (g) R = 1.01.

as expected (cf. figure 12(g)), although the depth of the lower layer now adjusts
smoothly to zero since there is a significant buoyancy contrast between the layers. As
the viscosity of the upper layer increases, a larger fraction remains above the lower
layer (figure 13(e, f)) and eventually, when F∗ = F = 1, the upper layer remains above
the lower layer at all points, and each current has the same depth (figure 13d). As
the current passes through the point RV = 1, corresponding to R∗ → ∞, an inflection
again develops in the upper layer.
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Figure 13. Variation of the flow morphology in a two-layer current produced by a maintained
source of fluid as a function of the viscosity ratios. In all calculations the density ratio has value
R = 2 and the flux ratio F = 1. The viscosity ratio takes the values (a) V = 100; (b) V = 3; (c)
V = 1; (d) V = 0.666; (e) V = 0.3; (f) V = 0.1; (g) V = 0.01.

5.2. Lower layer of greater extent, ηl > ηu

A similar approach was used for the numerical solution in the case where the upper
layer extends beyond the lower layer. Now, ζ is defined by

ζ = η/ηl (5.16)
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and we set

(nu, nl) = η2
l (fu, fl). (5.17)

At the leading edge of the current, ζ = 1, we require

nl(1) = 0 and
dnl
dζ

(1−) = − 2

3RV
(5.18)

while at the leading edge of the upper layer, ζ = ζu = ηu/ηl , we require

dnl
dζ

(ζu+) =
dnl
dζ

(ζ−) +
1

R

dnu
dζ

(ζ−) (5.19)

and
dnu
dζ

(ζu−) =
1

3

(
−2ζu +

dnl
dζ

(ζu−)

)
. (5.20)

The global mass conservation relations now become∫ 1

o

nl dζ = η3
l F and

∫ ζu

0

nu dζ = η3
l . (5.21)

As in § 5.1, we integrate from the nose of the current backwards, and for each value
of ζu we determine the corresponding value for F . In this way we may then determine
solutions for given values of R, V and F .

Figure 12(a–d) illustrates the evolution of the shape of the current as the buoyancy
ratio between the layers changes. The critical value R = 19, corresponding to the
solution F∗ = F yields the solution nu = nl as expected, since the difference in
viscosity is exactly compensated by the contrast in buoyancy (figure 12d). As R
increases, the lower layer begins to advance ahead of the upper layer (figure 12b, c) so
that eventually most of the lower layer lies ahead of the upper layer (figure 12a). In
this limit, in which R = 1000, the lower-layer buoyancy is so much larger than that of
the upper layer, that it evolves almost independently of the upper layer. Furthermore,
since the upper surface of the lower-layer current is of relatively shallow inclination,
and the upper layer only covers the initial fraction of the lower layer, then the upper
layer also evolves essentially independently of the lower layer. Note that in all these
examples, RV > 1, and V < 1.

Figure 13(a–d) illustrates the evolution of the shape of the current as the viscosity
ratio increases from the critical value for which F∗ = F (figure 13d). As the upper
layer becomes relatively more viscous, it lags behind the lower layer (figure 13b, c),
and as the current passes through the point R = 1, for which F∗ = 0, the lower-layer
depth actually begins to increase before reaching the leading edge of the upper layer
(cf. § 3). In essence, the lower relatively dense and less-viscous layer squeezes out from
under the upper layer, deepens, and then spreads into the region ahead of the upper
layer (figure 13a). This behaviour contrasts with the case in which the lower layer
is much denser, but more viscous than the upper layer (figure 12a). In that case the
lower current behaves essentially independently of the upper layer.

6. Extension to continuously stratified fluid
The methodology presented above may be extended to describe multi-layer gravity-

driven flows, although the algebra becomes increasingly involved. However, one
natural limit concerns the evolution of a continuously stratified gravity current.
Density-stratified currents can arise when fresh and brackish fluids mingle (e.g.
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Figure 14. Schematic illustrating the structure of a density-stratified gravity current
in a porous layer.

Phillips 1991). Viscosity-stratified currents may form during the secondary recovery
of oil through liquid injection, if the concentration of polymer added to the injectate
varies with time (Gorell & Homsy 1983; Manickam & Homsy 1993).

In general the evolution of a stratified current is complex since any shear in the
current will lead to variations in the vertical density and viscosity profiles with lateral
position in the current. However, two important cases involving a finite release of
fluid are revealed by extension of the solutions described in § 3.

6.1. Variable density, uniform viscosity

In § 3.3.1, we showed that for a two-layer current in which each fluid has the same
viscosity, V = 1, the depth of the lower layer remains constant until the depth of
the upper layer falls to zero. By analogy, in the case of a density-stratified current
of uniform viscosity we expect the density surfaces to be horizontal. As a result, the
density gradient will vary with depth so as to conserve mass and buoyancy (figure
14). If we denote the upper surface of the current by h(x, t), and the density at each
height y to be ρ+ ∆ρ(y, t), where ρ is a constant background value, then the pressure
at some point (x, y) within the current is

p(x, y) =

∫ h(x, t)

y

g∆ρ(y, t) dy + po(y), (6.1)

where po(y) is the background pressure. Therefore, applying Darcy’s law and the local
conservation of mass, we find (cf. (2.8))

∂h

∂t
=
kg

µ

∂

∂x

(
h
∂h

∂x
∆ρ(h, t)

)
, (6.2)

where for simplicity we consider the case φ = 1.
For a finite release, equation (6.2) admits a self-similar solution of the form

h = A(ωst)
−1/3f(η) and η = x/A(ωst)

1/3, (6.3)

where the reciprocal of the time scale, ωs = kg∆ρ(0, 0)/Aµ, and where the constant A
is determined in terms of the initial conditions as described below. In this self-similar
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solution, we can express the current density as a function of the depth,

∆ρ(h, t) = ∆ρ(0, 0)bs(f), (6.4)

where bs(f) is a function to be found. Since f(η), (6.3), is monotonic, we can also
define the inverse function η(f). Combining (6.2)–(6.4) we find that for a finite release

d

dη
(ηf) = −3

d

dη

(
f

df

dη
bs(f)

)
, (6.5)

which admits solutions of the form

η = −3bs(f)
df

dη
(6.6)

since df/dη = 0 at η = 0.
We now show how to relate the initial fluid distribution to that of the self-similar

flow described above. We suppose the current originates from a source reservoir of
fluid, 0 < x < L and 0 < y′ < H , with initial density profile ρ + ∆ρo(y

′), where
y′ denotes the depth in the initial distribution (figure 14). Once the current has
adjusted to the self-similar flow, with upper surface height y = h(x, t) and density
profile ρ+ ∆ρ(y, t), where y is the vertical coordinate in the self-similar flow, then for
0 < y < h, the conservation of volume requires

X(h, t) dh = L dy′ (6.7)

while the conservation of buoyancy requires

X(h, t)∆ρ(h, t) dh = L∆ρo(y
′) dy′, (6.8)

where X(h, t) represents the lateral extent of the density surface at height h and y′ is
related to h according to ∆ρ(h, t) = ∆ρo(y

′). Combining equations (6.7)–(6.8) with the
above similarity solution, we find that

η(f)
df

dy′
=

L

A2
(6.9)

and

η(f)bs(f)
df

dy′
=

L

A2

∆ρo(y
′)

∆ρo(0)
. (6.10)

Combining (6.6) and (6.10) leads to the relation

−η2 dη

dy′
=

3L

A2

∆ρo(y
′)

∆ρo(0)
. (6.11)

Given the density distribution in the initial release of fluid, ∆ρo(y
′), we can then

determine η as a function of y′ and hence f(η) and bs(f), (6.11), (6.6), (6.9), and the
structure of the stratified current; in solving (6.11), we apply the boundary condition
η(y′ = H) = 0, and for convenience we choose A2 = LH . We now consider an
important specific example of the above general model.

6.1.1. Uniformly stratified source fluid

An important example concerns a linearly stratified source fluid,

∆ρo(y
′) = ∆ρo(0)

(H − y′)
H

(6.12)
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for which (6.11) gives the result

η3
e − η3 =

9L(2Hy′ − y′2)
2HA2

. (6.13)

If we choose A2 = LH then

y′

H
= 1− (2η3/9

)1/2
, (6.14)

where the condition η(y′ = H) = 0 requires ηe = (9/2)1/3. Since b(f(η)) = 1 − y′/H
we deduce that

b(f(η)) =
(
2η3/9

)1/2
. (6.15)

From (6.6) we deduce that

f(η) =
1

3

∫ ηe

η

η dη(
2η3/9

)1/2
=
√

2((9/2)1/6 − η1/2). (6.16)

The density profile therefore has the form

b(f) = (1− f/61/3)3 (6.17)

in terms of the dimensionless height above the base of the layer. The functions (6.16)
and (6.17) are shown in figure 15 for illustration.

6.2. Variations in viscosity balancing variations in density

By analogy with the case F = F∗ (§§ 3.1, 5.1), we expect that there is one particular
relationship between density and viscosity for which the velocity of the current is
independent of height and hence for which the vertical profiles of density and viscosity
have the same form everywhere in the current.

If we denote the density, relative to the background, as a function of height by the
relation

∆ρ(y) = ∆ρoR(y/h), (6.18)

where h(x, t) is the depth of the current, then using the hydrostatic approximation,
the pressure in the current is given by

P (x, y) = ∆ρogh

∫ 1

ξ

R(ξ) dξ + po(y), (6.19)

where po(y) denotes the background pressure and here we set ξ = y/h. The speed in
the current is therefore given by

u(x, ξ) = −kg∆ρo
µ(ξ)

∂h

∂x

∫ 1

ξ

R(s) ds (6.20)

and the flux beneath the surface y = ξh(x, t) is

Q =

∫ y

0

u dy = −k∆ρogh∂h
∂x

∫ ξ

0

ds
1

µ(s)

∫ 1

s

R(s′) ds′. (6.21)

The rate of change of height of the density surface, y = hρ(x, t) = ξh, with time is
then given by

∂hρ

∂t
= −∂Q

∂x
. (6.22)
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Figure 15. Dimensionless shape and buoyancy profile of a density-stratified gravity current
produced from a discrete release of uniformly stratified fluid.

Combining (6.21) and (6.22), we find

ξ
∂h

∂t
= k∆ρog

∂

∂x

(
h
∂h

∂x

)∫ ξ

0

ds
1

µ(s)

∫ 1

s

R(s′) ds′, (6.23)

where we have used the constraint that ξ is independent of position in the current,
and where for simplicity we set φ = 1. Equation (6.23) holds for all values of ξ, and
so

ξ = β

∫ ξ

0

ds

µ(s)

∫ 1

s

R(t) dt, (6.24)

where β is a constant determined below. Equation (6.24) is equivalent to the relation

µ(ξ) = β

∫ 1

ξ

R(t) dt. (6.25)

6.2.1. Uniform density with variation in viscosity

A simple example of this class of flow concerns the gravitational spreading of fluid
with a gradient of viscosity, but of uniform density, ∆ρo, relative to the ambient,
R = 1. For example, such a flow may develop if the mass of polymer mixed into fluid
to be injected into a reservoir varies with time, as may occur in some enhanced oil
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recovery schemes (Gorell & Homsy 1983). To achieve the particular self-similar flow
for such a current, as described by (6.25), the viscosity profile should have the form

µ(ξ) = β(1− ξ) (6.26)

and so β corresponds to the viscosity at the base of the flow. In this case, the current
advances with a vertically uniform velocity, and each surface of constant viscosity,
µ(ξ), is described by the classic parabolic solution (3.1), with the height scaled by the
factor ξ (0 < ξ < 1). The current is able to advance in a self-similar fashion, with a
uniform speed, since the hydrostatic pressure gradient increases with depth below the
surface of the current at exactly the same rate as the viscosity.

7. Conclusions and discussion
We have examined the gravity-driven motion of two layers of fluid, of different

viscosity and density, through a model porous layer. By developing a theoretical model,
we have identified and calculated similarity solutions for both an instantaneous release
of a finite mass of each fluid, and for a maintained release of each fluid. The models
identify how the buoyancy and viscosity ratios of the layers control which of the two
layers advances more rapidly. We show that if the contrast in viscosity and buoyancy
of the two layers exactly compensate each other, F = F∗ (§§ 3.1, 5.1), then the current
evolves as if it were a single layer of fluid; the velocity of each layer is the same and
so the ratio of the depths of the two layers remains constant throughout the current.

For the case of a finite release of fluid, the changes in the structure of the current
are most readily understood from figure 3 (§ 3.6). This figure illustrates that if the
viscosity ratio of the upper- to lower-layer fluid is sufficiently large, V > Vd (F < Fd),
(3.46), then the lower-layer current detaches from the origin and advances ahead of
the upper layer. For smaller viscosity ratios, Vd > V > V ∗, the lower layer remains
attached to the source, but still advances ahead of the upper layer. However, if V is
smaller than the critical value V ∗ ((3.45), i.e. F = F∗), then the upper layer advances
ahead of the lower layer. Finally, when the upper layer is of sufficiently low viscosity,
V < Vu ((3.47), i.e. F > Fu), it actually separates from the source. Equation (3.45)
indicates that V ∗ = 1 in the limit F → 0, so that the lower layer will only run ahead
of a large volume of upper-layer fluid if it is less viscous; in contrast, when F → ∞,
V ∗ = 1/R, so that the upper layer will only run ahead of a large volume of lower-
layer fluid if it has viscosity smaller than the density ratio. We note that for these
finite currents, the shape of the upper surface of each layer is given analytically as
a combination of parabolas. This provides a useful benchmark for numerical models
of such flows.

We have also described a series of laboratory experiments using a Hele-Shaw cell
to examine the propagation of such two-layer gravity currents. The experimental
observations are in reasonable agreement with the similarity solutions. They also
show that the flow rapidly evolves towards the self-similar form once the aspect ratio
of the currents (height/length) has increased beyond about 1:10 (figures 6, 9).

Finally, we have extended the model to describe the propagation of density- and
viscosity-stratified gravity currents. New classes of similarity solutions are presented
to describe the spreading of (i) a finite release of density-stratified fluid of uniform
viscosity, and (ii) a viscosity-stratified fluid of constant density. These solutions
provide qualitative insight for the process of secondary oil recovery if the polymer
concentration of liquid injected into the reservoir varies with time. However, further



112 A. W. Woods and R. Mason

analysis is required to model more general initial conditions and to account for the
effects of capillarity and wetting.

Although the work is based on a simple, constant-permeability model of a porous
layer, and does not account for effects of capillarity and non-uniformities in the
structure of the rock, the models do provide fundamental insights into some aspects
of the macroscopic behaviour of gravity- (rather than pressure-) driven flows, in
particular, the prediction of which of the two layers advances furthest into the rock.
Another key feature of the experiments is the absence of small-scale viscous fingering
and the associated formation of an intermediate zone in which the two fluids are
intermingled (Saffman & Taylor 1959; Chouke et al. 1959). Instead, after the initial
transient, the pressure gradient, which is the result of gradients in the gravitational
head, decreases in the direction of the flow, and the interface remains quite sharp,
with the less-dense fluid lying above the denser layer (figures 6, 9).

Noting the simplifications, it is of interest to consider the implications of the
model for displacement flows in porous rocks. First, we consider how a cloud of
relatively dense pollutant, which has contaminated a porous layer, may be contained
by injecting a volume of relatively light fluid laden with gel which is designed to
set at some time after release. As a simplification we assume that up to the point
of setting, the light fluid remains of uniform viscosity, but then it sets in place. The
objective of the injection process is to contain the pollutant below the cloud of light
injectate, so that when the gel sets, the pollutant remains confined (e.g. figure 2a, b;
figure 6). We showed in § 2 that the relative motion of the pollutant and the light fluid
depends on the viscosity ratio, the buoyancy ratio and the volume ratio. Equation
(3.7) establishes the critical volume ratio at which the upper-layer fluid overruns the
lower layer, and thereby can contain the contaminant. Equation (3.37) establishes the
critical volume ratio at which the upper layer detaches from the source and hence
at which the contaminant would become exposed at the source. The critical value
of F has been plotted as a function of R in figure 16 for a viscosity ratio, V = 0.1.
The plot identifies the important result that there is a range of buoyancy contrasts
which will enable trapping of the contaminant. For smaller buoyancy contrast, the
upper layer separates from the source, while for larger contrast, the lower layer runs
under and ahead of the injected fluid. Similar principles apply for different viscosity
contrasts, the key constraint being that the injected fluid is less viscous than the
contaminant, otherwise the contaminant will run ahead of the injectate. The volume
of injectate should also be comparable to the volume of contaminant in the rock,
unless the viscosity and buoyancy ratios can be matched so that their product lies
close to unity, in which case it would be possible to use less of the gelling injectate to
trap the contaminant.

Second, we consider the injection of polymer-rich water into a reservoir to displace
a finite layer of oil. Although this is a highly complex multiphase problem, in which
both fluids may be stratified in viscosity and density, it is of interest to examine
the qualitative type of flow which may develop in the two-layer gravity-dominated
flow regime. We neglect the effects of capillary forces, wetting and the effects of any
mixed zone which may develop in the vicinity of the displacing front, and which leads
to a partially water- and partially oil-saturated zone (e.g. Lake 1989). The model
predictions may be most applicable for flow in rock whose permeability is primarily
associated with fractures. For typical density ratios R ∼ 1–2 and viscosity ratios
V ∼ 10–1000, we expect that the water will advance below and ahead of the oil
(figures 2g, f; figure 9), displacing relatively little oil per unit liquid injected. Again
this flow may be interpreted as a single gravity-controlled viscous finger of water
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Figure 16. Illustration of the region in the volume ratio–buoyancy ratio space in which a light
layer of fluid will act to confine a denser layer of fluid. Here the viscosity ratio V = 0.1.

running under the oil. In some cases, the viscosity of the injected water is increased
by adding polymer. If the viscosity of the polymer-rich water were comparable to
that of the oil, then from the results of § 3 we would expect that a larger mass of oil
would be displaced per unit mass of water injected (figure 2d, e).

We are at present extending this work to include a number of additional processes
which may influence the evolution of the system including wetting effects and the
development of partially saturated zones. For immiscible displacements, capillary
forces may act to change the structure of such gravity currents owing to retention of
fluid in some of the pore spaces. Although this is a complex process, if the properties
of the porous layer are uniform then, for the purposes of macroscopic modelling, one
can model the action of surface tension on the drainage of the fluid by assuming
that a uniform fraction of the fluid is retained as an interface recedes (cf. Barenblatt
1996; Woods 1998). The models presented above may be extended to describe this
situation by using a differential form for global mass conservation which accounts
for the loss of mass from the current (cf. Woods 1998). It would also be of interest
to examine in more detail the initial transient adjustment of the currents towards
the self-similar structure. During the early stages when the flow is dominated by the
applied pressure, the two fluids mingle within the pore spaces and a morphologically
complex two-phase flow develops, with the pore space being partially saturated in
each fluid phase. This contrasts with the simpler interface morphology which we have
examined and illustrated experimentally in a Hele-Shaw cell when the dynamics is
dominated by gravity. The models may be extended to describe radially symmetric
displacement flows (cf. Woods 1998), and although beyond the scope of the present
study, in that case, the gravitational forces will become increasingly dominant relative
to the applied pressure forces with distance from the source.

Finally, we mention that the insight developed from this study provides new
understanding of the propagation of gravity-driven reaction fronts. Such fronts may
be produced when a reactant-laden fluid migrates under gravity through a permeable
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rock (Phillips 1991). In that case, the regions ahead of and behind the reaction front
are of different permeability and porosity. This has some analogy with the propagation
of a two-layer gravity current in which the layers have different viscosity; indeed,
many features of the flow and reaction patterns may be understood by reference to
the present work (Raw & Woods 2000).
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